

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583 QUESTION BANK (DESCRIPTIVE)

Subject with Code: Analog Circuits (23EC0406)

Course & Branch: B.Tech.-EEE

Regulation: R23 **Year & Sem:** II-B.Tech.& II-Sem.

UNIT –I DIODE CLIPPING AND CLAMPING CIRCUITS

1.	a)	Define clipper and list types.	[L1][CO1]	[2M]
	b)	List the applications of clampers.	[L1][CO1]	[2M]
	c)	Discuss the need of biasing of a transistor.	[L2][CO1]	[2M]
	d)	Define operating point.	[L1][CO1]	[2M]
	e)	What is thermal Runaway?	[L1][CO1]	[2M]
2.	a)	Explain positive and negative clippers with neat sketches	[L2][CO1]	[5M]
_	b)	Explain about positive biased clippers with neat sketches	[L2][CO1]	[5M]
3.	a)	Describe the operation of clipping at two independent levels	[L2][CO1]	[5M]
	b)	Draw the transfer characteristics of clippers and explain.	[L2][CO1]	[5M]
4.	a)	Draw the circuit diagram of positive clamper and input & output	[L2][CO1]	[5M]
	b)	wave forms. Describe the operation of negative clamper circuit with neat	[L2][CO1]	[5M]
	b)	diagram	[L2][CO1]	
5.		Describe the operation of Biased Positive Clipper circuit with	[L2][CO1]	[10M]
		neat diagram	[][]	[]
6.	a)	Comparison between clipping and clamping circuits.	[L2][CO1]	[4M]
	b)	List out the different types of clipping and clamping circuits.	[L1][CO1]	[6M]
7.	a)	Explain the concept of DC and AC Load lines and discuss the	[L2][CO2]	[5M]
	1- \	Criteria for fixing the Q-point.	[] 2][[]	[<i>E</i>] <i>[</i> []
	b)	Draw the Fixed bias circuit and derive an expression for the stability factor.	[L2][CO2]	[5M]
	a)	Compare the various biasing techniques of a BJT.	[L2][CO2]	[4M]
8.	a)	Compare the various brasing techniques of a B.F.		[-11/1]
	b)	Draw the self-bias circuit and derive an expression for the	[L4][CO2]	[6M]
	ĺ	stability factor.	2 32 3	
9		Consider the self-bias circuit where $Vcc = 22.5$ volts, Rc	[L3][CO6]	[10M]
		=5.6k Ω , R ₂ = 10k Ω and R ₁ = 90k Ω , hfe = 55, V _{BE} =0.6V. the		
		transistor operates in active region. Determine i) Operating point		
		ii) stability factor.		
10.	a)	Draw the collector to base bias circuit and derive an expression	[L4][CO3]	[6M]
	1 \	for the stability factor.	ET 011 CO 01	F 43 63
	b)	Why self-bias is more stable compared with other biasing	[L2][CO2]	[4M]
11.		methods. Explain Thermistor & Sensistor compensation techniques with	[L2][CO2]	[10M]
11.		circuit diagram.	լեշյլԸՕշյ	[10M]
		onour angium.		

$\begin{array}{c} \textbf{UNIT-II}\\ \textbf{Small signals modeling of BJT and Feedback amplifier} \end{array}$

1.	a) b)	List out four hybrid parameters Sketch the Equivalent circuit of a transistor using h-Parameters.	[L1][CO2] [L1][CO2]	[2M] [2M]
		Express the negative feedback amplifier.	[L1][CO2]	[2M]
		List the characteristics of negative feedback amplifiers.	[L1][CO2]	[2M]
	e)	Compare positive feedback and negative feedback.	[L2][CO2]	[2M]
2.		Derive the equations for voltage gain, current gain, Input impedance, and output admittance for a BJT using h-Parameter model for BJT Transistor.	[L4][CO3]	[10M]
3.	a)	A CE amplifier has the h-parameters given by $h_{ie} = 1000 \Omega$, $h_{re} = 2x10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 25 \mu$ mho .if both the load and source resistances are 1K Ω , determine the current gain & voltage gain.	[L3][CO3]	[5M]
	b)	Discuss the frequency response of CE amplifier with a neat diagram.	[L2][CO2]	[5M]
4.		Derive the equations for voltage gain, current gain, Input	[L4][CO3]	[10M]
		impedance, and output Impedance for a BJT using Approximate model in CC configuration.		
5.		For a CB transistor amplifier driven by a voltage source of internal resistance $R_s = 1200\Omega$, the load impedance is resistor $R_L = 1000$ Ω .The h-parameters are $h_{ib}=22$ Ω , $h_{rb}=3x10^{-4}$, $h_{fb}=-0.98$ and $h_{ob}=0.5\mu A/V$. Compute the current gain A_I , Input impedance	[L3][CO3]	[10M]
		R_i , voltage gain A_v , output impedance Z_o , A_{IS} & A_{VS} using		
		simplified model.		
6.		Explain the concept of Feedback amplifier with block diagram and	[L2][CO2]	[10M]
7.	a)	general structure. Sketch the four types of feedback amplifier topologies.	[L3][CO2]	[5M]
,.		An RC coupled amplifier has a mid-frequency gain of 200 and a frequency response from 100 Hz to 20 kHz. A negative feedback network with = 0.02 is incorporated into the amplifier circuit. Determine the new system performance.		[5M]
	a)	Describe the effect of input resistance for Voltage shunt feedback	[L2][CO3]	[5M]
8.		amplifier.		
	ŕ	Describe the effect of input resistance for current shunt feedback amplifier.	[L2][CO2]	[5M]
9.	a)	A voltage series negative feedback amplifier has a voltage gain without feedback of $A=500$, input resistance $R_i=3k\Omega$, output resistance $R_o=20k\Omega$ and feedback ratio β =0.01. Calculate the voltage gain A_f , input resistance R_{if} and output resistance R_{of} of the amplifier with feedback.	[L3][CO2]	[5M]
	b)	Enumerate the general characteristics of negative feedback amplifiers	[L1][CO2]	[5M]
10.	a)	Describe the effect of output resistance for current shunt feedback amplifier.	[L2][CO2]	[5M]
	b)	An amplifier has voltage gain with feedback of 100.if the gain without feedback changes by 20% and the gain with feedback should not vary more than 2%, determine the values of open loop gain A and feedback ratio β.	[L2][CO3]	[5M]
11	a)	Describe the effect of output resistance for Voltage series feedback amplifier.	[L2][CO2]	[5M]
	b)	Describe the effect of Input resistance for Voltage series feedback amplifier.	[L2][CO2]	[5M]

Unit III Oscillator circuit

		Oscillator circuit		
1.	a)	List out different types of oscillator?	[L1][CO1]	[2M]
	b)	What is the necessary condition for sustained oscillations?	[L1][CO1]	[2M]
	c)	Define op-amp.	[L1][CO1]	[2M]
	d)	What is slew rate?	[L1][CO1]	[2M]
	e)	Draw the IC 741 op-amp pin configuration.	[L1][CO1]	[2M]
2.	a)	Explain Barkhausen criterion for oscillations with suitable diagram.	[L2][CO1]	[5M]
	b)	Interpret the various types of oscillators.	[L2][CO1]	[5M]
3.	a)	Determine the condition for sustained oscillations for an RC phase	[L3][CO3]	[5M]
	b)	shift Oscillator with necessary circuit diagrams. Determine the frequency of oscillations when an RC phase shift oscillator has R=10 k Ω , C=0.01 μ F and R _C = 2.2 k Ω .	[L3][CO6]	[5M]
4.	a)	Explain the working principle of Wein-bridge oscillator using BJT and Derive the expression for frequency of sustained oscillations.	[L4][CO3]	[5M]
	b)	In a Wien bridge oscillator, if the value of R is $100 \text{ k}\Omega$ and frequency of oscillation is 10kHz , examine the value of capacitor C.	[L3][CO6]	[5M]
5.	a)	Draw the circuit diagram of Colpitts crystal oscillator using BJT and show the expression for frequency of oscillations.	[L3][CO3]	[5M]
	b)	Sketch the symbol ,Equivalent circuit and relation between reactance and frequency of piezoelectric crystal	[L2][CO3]	[5M]
6.		A crystal has the following parameters: $L = 0.5$ H, $Cs = 0.06$ pF, $Cp = 1$ pF, and $R = 5$ k Ω . Find the series and parallel resonant frequencies and the Q-factor of the crystal.	[L3][CO3]	[10M]
7.	a)	Draw the schematic symbol of an op-amp and list the different terminals with their features.	[L1][CO1]	[5M]
	b)	Draw the equivalent circuit diagram of Op-amp and list out the ideal characteristics of an operational amplifier.	[L1][CO1]	[5M]
8.	a)	For a given op-amp, CMMR = 10^5 and differential gain $A_d = 10^5$. Determine the common mode gain A_{cm} of the op-amp.	[L2][CO5]	[5M]
	b)	Discuss the term common mode rejection ration (CMMR) in opamp.	[L2][CO5]	[5M]
9.	a)	Explain AC characteristics of op-amp.	[L2][CO5]	[6M]
,	b)	What are the features of IC 741 Op-amp?	[L1][CO3]	[4M]
10.	a)	Explain the term slew rate and illustrate the importance in op-amp circuits.	[L2][CO5]	[6M]
	b)	An op-amp has a slew rate of $2V/\mu s$. What is the maximum frequency of an output sinusoidal its peak value of $5V$ at which the distortion sets in due to the slew rate limitation?	[L1][CO6]	[4M]
11.	a)	Explain about block diagram of typical Op-amp in detail.	[L2][CO3]	[5M]
	b)	Explain DC characteristics of op-amp.	[L2][CO3]	[5M]

Op-Amp Applications

1.	a)	Define common mode Rejection Ratio.	[L1][CO1]	[2M]
	b)	Draw equivalent circuit of an ideal Op-Amp	[L1][CO1]	[2M]
	c)	List out the specifications of 741 IC.	[L1][CO1]	[2M]
	d)	List the applications of Astable Multivibrator	[L1][CO1]	[2M]
	e)	What are the types of Multivibrators?	[L1][CO1]	[2M]
2.	a)	Explain the operation of inverting summing amplifier.	[L2][CO5]	[5M]
	b)	For the Non-inverting amplifier $R_1=1k\Omega$ and $R_f=10k\Omega$. Calculate	[L3][CO6]	[5M]
		the closed-loop voltage gain of the amplifier and the feedback factor		
		β		
3.	a)	Draw the circuit diagram of subtractor using Op-amp and explain its operation.	[L2][CO5]	[5M]
	b)	Explain about Non Inverting AC amplifier using Op-amp?	[L2][CO4]	[5M]
4.	a)	For a V-I converter $V_{in}=5_V$, $R=10k\Omega$, $V1=1_V$, Find the load current and output voltage Vo. Assume the Op-amp is initially nulled.	[L3][CO6]	[5M]
	b)	Design a differentiator circuit with sine wave input using op-amp.	[L6][CO5]	[5M]
5.	a)	Discuss applications of I to V and V to I converters.	[L2][CO5]	[5M]
	b)	Design an op-amp differentiator that will differentiate an input signal with $f_{max} = 100 \text{ Hz}$	[L6][CO6]	[5M]
6.	a)	List out the applications of analog multiplier and draw the schematic symbol of multiplier.	[L1][CO5]	[5M]
	b)	Explain the operation of integrator using op-amp with a neat circuit diagram and draw the input-output waveforms?	[L2][CO5]	[5M]
7.		Explain about Instrumentation amplifier with neat circuit diagram.	[L2][CO4]	[10M]
		Explain the operation of triangular wave generator using op-amp,	[L2][CO4]	[10M]
8.		with a neat circuit diagram and its waveforms.		
9.	a)	Explain about square wave generator with neat diagram using opamp.	[L2][CO4]	[5M]
	b)	Draw the circuit of Basic log amplifier and explain its operation.	[L2][CO5]	[5M]
10.	a)	Explain the operation of monostable multivibrator using op-amp ,with a neat circuit and its waveforms	[L2][CO6]	[5M]
	b)	List the different types of comparators and draw the transfer characteristics of ideal comparator.	[L1][CO4]	[5M]
11.	a)	Draw the circuit diagram of Non-Inverting comparator & explain its operation.	[L2][CO4]	[5M]
	b)	How does the sample and hold circuit operate during the "sample" mode.	[L2][CO4]	[5M]

Unit V Op-Amp Applications

1.	a)	Draw the pin configuration of 555 timer.	[L1][CO1]	[2M]
	b)	What is a phase locked loop?	[L1][CO1]	[2M]
	c)	List out the examples of digital phase detectors.	[L1][CO1]	[2M]
	d)	Define monostable multivibrator.	[L1][CO1]	[2M]
	e)	What are the specifications of ADC and DAC?	[L1][CO1]	[2M]
2.	a)	Explain about 555 timer functional diagram.	[L2][CO1]	[5M]
	b)	Discuss about Schmitt trigger using 555 IC.	[L2][CO1]	[5M]
3.	a)	Draw a neat circuit of astable multivibrator using 555 IC and	[L2][CO5]	[5M]
		explain operation with waveforms.		
	b)	In the astable multivibrator, R_A =2.2k Ω , R_B =3.9k Ω and		[5M]
		C=0.1µF.Determine the positive pulse width t _c , negative pulse		
4.	۵)	width t _d and free-running frequency fo.	[] [][[][][]	[EN /[]
4.	a)	Explain the operation of monostable multivibrator using 555 IC, with a neat circuit and its waveforms		[5M]
	b)	Draw SE566 VCO connection diagram and explain its operation.	[L2][CO5]	[5M]
5.	U)	Explain about PLL principle in detail and block diagram	[L2][CO5]	[10M]
6.	a)	Explain the Binary weighted resistor DAC with a neat diagram.	[L2][CO4]	[5M]
	b)	Draw the circuit diagram of inverted R-2R DAC and explain its operation.	[L2][CO4]	[5M]
7.	a)	Explain in detail about R-2R DAC with a neat diagram.	[L2][CO4]	[5M]
	b)	The basic step of a 9 bit DAC is 10.3 mV. If "000000000"		[5M]
		represents 0 V. What output is produced if the input is		
		"101101111"?		
0		Consider a 4 bit R-2R ladder DAC of the a) Given $R=10k\Omega$ and		[10M]
8.		$V_R=10V$. Determine the value of the feedback resistance R_f for the		
		following output condition. i) Value of 1 LSB at the output is 0.5V.		
		ii) Analog output is 6V for a binary input of 1000.		
		iii) Full scale output voltage is 10V.		
0		Explain about the flash type ADC using op-amp with the truth table	[L2][CO4]	[10M]
9.		using 8 by 3 priority encoder.	[-][- ·]	[J
10.		Draw the circuit diagram of Dual Slope ADC and explain its	[L2][CO4]	[10M]
		working with neat sketches.		_
11.		Discuss the parameters specifications of DAC/ADC.	[L2][CO4]	[10M]